
Charon toolkit for parallel, implicit structured-grid computations:

Functional design

Rob F. Vall der Wijngaart

MR.J Technology Solutions

NASA Ames Research Center

Molrett Fieht: CA 94035

1 Introduction

In a previous reporl lhe design concepts of Charon [5] were presented. Charon is a l.oolkit

that aids engineers in developing scientific programs for slruclured-grid applications to be

run on MIMD parallel compulers. It constitutes an augmentation of tile general-purpose

MPI-based [4] message-passing layer, and provides the user with a hierarchy of tools for

rapid prototyping and va |(tat|on of parallel programs, and subsequent piecemeal performance

tuning.

Here we descril)e lhe :mplementation of the domedn decomposition tools used for creating

data distribul.ions across sels of processors. We also presenl the hierarchy of parallelization

lools lhat. allows smool h iranslation of legacy code (or a serial design) into a parallel program.

Along with the actual 1ool descriptions, we will present the consideralions thai led to the

parlicular design choices Many of lhese are motivated t)y tl|e requiremenl thai Charon musl

be useful within the ira( ilional computalional environments of Forlran 77 and C. Only lhe

Fortran 77 synlax will t),_ presented in ibis reporl.

2 A multi-level, orthogonal design

In Charon we distinguish between data (tistribution support, and parallel execution supporl.

They are orlhogonal elmnenls of lhe design space, meaning thai high-lewq (tala distril)ulion

fimclions can t)e applied in conjunclion wilh low-level parallel execution support tools, and

vice versa. Much of lhe 1rouble in the implemenlation of advanced algorithms on MIMD

message-passing system,, stems from the facl that dala distribution and concurrent execu-
tion on distribuled (tala struclures cannot be separated. Those systems lhal. (to allow lhe

separation between lhe two are usually very reslricte(l in both lhe type ot" operations and

the type of distril)utions allowed, as was detailed in [5]. Charon is able Io provide virtually

complete freedom in (tala dislribution while still offering powerfid supporl fools for the con-

lrol of lhe program flow, t)ecause it treats parallelization as an incremental process, whose

final product must t)e vo.ry e[t'icient, but whose intermediate slages are allowed 1o be slow.

The foremosl decision, r aa(te by the user, is the choice of the data distribution (possibly dy-

namic). Whereas the lowesl, level of abslraction in Charon features close integration of data



distribulion and parallel executionenvironment,the highest levelof abstractioncontains

support fools that allow the program to execute correctly on a distributed data set. wilh

minimal structural and texl.ual changes in the serial program taxi. This is accomplished as
follows.

All arrays thai need to be distributed regisler with a distribution utilily that structures

the local storage space for a segment (or segments) of the lhe array (see Section 3). All

other variables are global, which means lhat lhey exist on all processors, and have the same

value on all. Moreover, all processors execute the same program stalemenls. Whenever

an assignment to an element of a distributed array" takes place, the owner-compules rule is

invoked, which means lhat only one processor performs the actual assignment. Whenever an

assignment requires the value of a distributed array element, a communicalion lakes place

automaticMly if lhe element is remote. The mechanism for such flexible assignments, which

makes use of the Charon fimctions assign, address, and value, is described in Section 4.

Complications may occur, for example when a user fimction is called thai lakes as input

distributed array elements, and uses their addresses to modify" nearby memory locations

without providing explicil informalion regarding the position of lhose locations within the

distributed array. In that case more versatile access mechanisms need lo be applied that

(may) reich blocks of data, and that regulate execution of fimctions depending on which

processor owns the data being modified. For this purpose the Charon fimctions invoke

and revalue are provided. Despite this flexibi]ily, there are still cerlain program slructures

that cannot be expressed using lhe top-level fimctions in Charon. That is because lhose

fimctions rely on alornicil.y of the owner-computes rule. Atomicity is automatically satisfied

by a single assignment, but can be violated by user-defined or library fimctions operating on

pointers. If a flmction modifies multiple distinct distributed arrays, or different paris of the

same distributed array, there can be a conflict about ownership of the data to be modified. It

is the responsibility of the user to resolve such conflicts, or to guarantee program correctness
implicitly.

3 Distribution support tools

Charon supports the parallelization of programs using multi-dimensional arrays relaled to

sl,ruclured grids. The data distribution process consists of three fimdament,at steps:

1. Define a grid and create a partitioning using Cartesian sections. The result is called a
partition.

2. Assign partitions Io processors. The result is called a decomposition.

3. Create the multi-dimensional, distribuled array and associale il with a decomposition.

The resull is called a distributed grid variable, or distribulion.

Common decomposil.ions, such as uni-parlitions or diagonal multi-parlilions (see [5, 6]),

can be created with a few high-level decomposilion fimctions. Customizalions are performed

using lower-level fimctions. In lhe following description of Charon flmctions, the integer

variables grid; partition, decomposition, and distribution (in lypewril.er font) are
handles to the corresponding data structures.



create_grid, set_gr:Ld_size: an(] set__grid_start are used to define a discratizalion grid

of a certain dimensionalily: to specify the size of l,he grid in a parlicular dimension: an(] to

redefine the sl, arl, ing inde_ of the grid ill a specific dimension (default is specified lhrough lhe

Charon fimclion set_def ault_offset; see below), respecl, ively. The grid and all subsequent

conslrucis based on il ar._ restricted lo the processors in lhe MPI communicator specified in

treat e4_rid.

Syntax of Fortran 77 grid creation functions.

subroutine creat e_.grid (grid, communi cat or, no_dimens ions )

integer communicator, grid, no_dimensions

subroutine set_gr-.d_size (grid, dimension, size)

integer grid, dimension, size

subroutine set_gr..d_start (grid, dimension, start)

integer grid, dimension, start

Create_partition; set_no_cuts: set_cut: an(] set_even_cuts are llSed Io define a par-

t ition, to specify" tile numl)er of Clll, S in a certain dimension: lo (re)define tile value of a

particular cul (a value .)f n, means thai, a separator is placed between poinls n - 1 and

n), and to space cuis in a ceriain dimension as evenly as possible, respectively. If no ex-

aclly uniform division is possible, set_even_cuts will augmenl lhe size of the low numbered

partilions by one unil utdil l}le leftover points have been exhausled.

Syntax of Foriran 77 pariitioning fimclions:

subroutine create .part it ion (partit ion, grid)

integer partition, grid

subroutine set_no..cuts(partition,dimension,no_cuts)

integer partition, dimension, no_cuts

subroutine set_cu;(partitio,dimension,cut,value)

integer partition, dimension, cut, value

subroutine set_ even_cut s (part it ion, dimens ion)

integer partition, dimension

create_decompositi on and set_owner are used Io de_1]e a decomposilion and io (re)sei

owners|lip of a particular parlition, respeclive]y. Ownersllip is signified by lhe rank of l]le

processor wil.llin llle COlnmunicaior. Because grids can have differenl dimensionaliiy, l|le

number of indices needed to idenlify a parlition can vary. I1 is lhe user's responsibilily 1o

supply 1]|e correcl num|?er.

Syntax of Forlran 77 decomposilion funclions:

subroutine creat e_decompo sit ion (decompo sition, part it ion)

integer decomposition, partition



subroutine set_owner(decomposition, owner_rank,indexl, index2 .... )
integer decomposition, owner_rank, index2, index2, . . .

Note It|at Fortran 77 requires a fixed number of parameters for each funclion or sub-

routine. Tile definition of set_owner and several other Charon fimctions does not conform

1o that slandar(l, which may lead to problems on some computer systems. These can be

resolved by using a Forlran 90 compiler instead, which will automatically insert defaull

values for the dummy indices that are left unspecified. Whereas the set_owner routine suf-

rices to construct any type of decomposition, it is usually preferable to create commonly

used decompositions using a few high-level routines. It is simpler, less error-prone, and also

more efficient; Charon can use optimized interrogation and communication calls when the

decomposition has a known, regular structure. The common decompositions currently sup-

ported by Charon are uni-partitions (each processor is assigned a single parlition), diagonal

mull i-partitions (each processor is assigned several partitions in a regular paltern [6]), and

High Performance Fortran-style [2] block-cyclic distributions. The predefined decomposi-

lions assume partitioning of the grid in all dimensions. However, particular dimensions can

be excluded by invoking the command exclude_partition_dimension. In multi-parlilion

decompositions al least lwo grid dimensions must be partilioned. By default, the ,mi-

partition decomposition minimizes a_pect ralios in lhe partitioned dimensions (for example,

a grid of 80 × 20 points would be divided in 16 partitions of 10 × 10 poinls). Customiza-

tion is oblained by specifying the number of processors in each parlicular grid dimension

(set_no_processors). By default, lhe block-cyclic decomposition uses a cyclic distribu-

tion with a group size of one in all partitioned dimensions. The number of processors to

be applied to each partitioned grid dimension is as close to equal as possible. Differenl

numbers of processors and different group sizes can be specified using set_no_processors

and set_group_size, respeclively. In addition, a block decomposition can be specified for

selecled dimensions using set_block_partitiom When a decomposition is conslrucled us-

ing high-level Charon [unctions, a parlition is created implicitly. The flmcl.ion partition

returns a handle to thai partition.

Synlax of Fortran 77 high-level decomposition filnctions:

subroutine creat e_unipart it ion (decompo sition, grid)

integer decomposition, grid

subroutine create_multipartition(decomposition,grid)

integer decomposition, grid

subroutine create_block_cyclic(decomposition,grid)

integer decomposition, grid

subroutine exclude_partition_dimension(decomposition,dimension)

integer decomposition, dimension

subroutine set_no_processors(decomposition,dimension,no_procs)

integer decomposition, dimension, no_procs)

4



subroutine set_group_size(decomposition,dimension,size)
integer decomposil.ion, dimension, size)

subroutine set_block_partition(decomposition,dimension)
integer decomposition, dimension

integer function partition(decomposition)
integer decomposition

Note t}lal, lhe l]nm[)erin_ O[ all array elements requires lhe defh]ition of an array offset. For

Fortran tile default offset is 1. For C an(] C++ it is O. Consequenlly, the first grid dimension

has index 1 in Fortran, an(l index 0 in C. Tile defaull offset, can |)e changed |)y calling

set _default_off set (of fset ).

h] addil.]on to creel ion and assignmenl funct.ions; there also exisl deslruclion and inter-

rogation functions for m,)sl, of the above consl.rucls. Where applicable, lhese are (|efined by

replacing create wilh delete, or by leaving off set_, respeclively, lt. is never required to

delele a data slruclure when it, is no longer needed, but in extreme cases, when many calls

are made t,o 1.he crealion funclions, space may become lighl.

A quick way to cuslomize a decomposilion is 1o creaJe one using a predefined high-

level rouline, and lhen modify it. For example, one may wahl Io use a lhree-dimensional

diagonal mull i-parl.il ion scheme, bul, parlitions owned by processor 2 shouht be transferred

1o processor 7:

do kp = I, no_])artitions(decomposition,3)

do jp = l, no_partitions(decomposition,2)

do ip = I, no_partitions(decomposition,l)

p = partition_index(decomposition,ip,]p,kp)

if (partition_owner(decomposition,p) .eq. 2) then

call set.partition_owner(decomposition,Z,p)

end if

end do

end do

end do

All,ernatively, when the particular location of the partition in the decomposition is irrel-

evanl, the l riple loop c_,.n be wrillen as a single canonical loop over all parlitions in the

decomposition:

do p = l, total_no_partitions(decomposition)

if (partition_owner(decomposition,p) .eq. 2) then

call set_par_ition_owner(decomposition,Y,p)

end if

end do

Execulion of commit decomposition is necessary when construction of a decomposilion

is finalized. I1 serves l(, check consistency of the definition of the (tecomposilion and lo



compute some informalion concerning communication schedules. It is possible to modify

some of the dale strucl ures underlying a decomposition that make the aclual decomposition

invalid. For example, if the number of cuts in a cerlain dimension of lhe grid is changed, lhe

partition ownership schedule contained in lhe decomposition can no longer be valid. In thai

case commit_decomposition will fail and a new decomposilion must be constructed. If the

decomposition is found to be valid but 1o not qualify as one of the special predefined types

anymore, lhe special internal attribute is reset..

Once a decomposition has been formed, distributed variables can be associated with

it. The fimction createAistribution creates a distributed array of some elemenlary

data_type (NPI_integer, NPI_EAL, ere), whose storage is reserved at some specified start_

address. The user also specifies the tensor rank of the variable, plus an array of numbers of

components for each index of lhe rank. For example, selling rank equal to 2 and components

equal to (3,3) defines a 3 x 3 matrix at each point of the grid. To accommodate stencil

operations the user specifies a positive number of ghost_points. To determine whether

enough space has been allocated for the local portion of the distributed variable, the user

can request the number of units of the elementary data type needed, using storage_space.

Syntax of Fortran 77 distribut.ion fimction:

$
subroutine create_distribution(distribution,decomposition,data_type,

start_address,rank,components,ghost_points)

integer distribution, decomposition, data_type, rank,

components(*), ghost_points

<type> start_address(*)

integer function storage_space(decomposition)

integer decomposition

Here <type> refers to a range o[ memory locations reserved for slorage of elements of type

data_type. By defaull, mulliple parlitions owned by the same processor are stored such the!

each partition takes up an equal amounl of space. The layout is consistent with a storage

declaration that allocaies 1o each partition a subarray of identical dimensions. This will. in

general, create gaps, which is wastefill. But il does allow uniform and simple declaration

of complex distributed variables. Space can be conserved by calling lhe fimction compact,

which eliminates any gaps, bul necessilates the use of Charon access hmction offset (see

Section 4) to det, ermine where a particular partition starts in memory. Since every parlition

may have differenl subarray dimensions when compacted, suitable dimensioning stalements

may require calls to partition_size. Complete control over memory allocation is got by

specifying explicitly where each partilion p slarts in memory, and what the subarray di-

mensions are. Such specificalions, or calls to compact, musl be made before any part of

the dislributed variable is used, because they affecl important Charon flmclions, such as

address, and value.

Syntax of Forlran 77 layout funclions:

subroutine compact(distribution)

integer distribution



subroutine set_offset(distribution,location,p)
integer distribution, location, p

subroutine set_ar],ay_dimension(distribution,dimensions,p)
integer distribut:.on, dimensions(*), p

Finally, we note thai all grid, partition, decomposilion and distribution creation and

manipulation operations are global, which means that all processors ill the corresponding

communicator must call these routines with tile same parameters.

4 Execution support tools

At the highest level of a|,slraction, (_|laron musl present an inlerface lhal makes lhe transi-

lion from a serial to a correcl parallel implemenlation simple and straightforward. The user

need not be concerned about details of the domain decomposition, local and remote data.

concurrency, communicat, ion, etc. F'ffeclively, lhe lop level programming lools support the

Charon data distributions (as do the other levels), but hide lhe distribnlion aspects from

the user. This is generaliy inefficienl, but that is not a problem. In subsequent refinements

performance improvemellts can be oblained, again making use of Charon tools.

We note that Charo;I does not provide an automatic code conversion capability. All

parallelizalion is carried oul by the user, who retains complele control over data lay-oul

and program flow. Hen :e, the necessary code changes must be kepl at a minimum. For

thal purpose Charon oN_rs execution support tools that simulale a single data space and a

single thread of control. Assignments and control structures are exact, images of the serial

program, and the resull_ng code is executed by all processors; Charon simulates a single,

replicated program counler. We use l he following rationale for the implementation. Each

element, of a distribute¢ variable has a unique owT_er processor, so it is mosl natural

and often least expensixe---to employ an owner-comp_ttes rule: whenever an element of a

distributed variable occurs on a lefl-hand side of an assignment, lhe processor who owns

it is responsible for ils evaluation. But since all processors execute the same code wilhin

lhe same control slruclu ce. we have to provide a mechanism lo skip assignments to nonlocal

memory locations; the r,@icaled program counlers 'pause' on all processors, except on the

one execuling lhe local assignment, and 'resume' collectively immediately thereafter. The

obvious way to impleme_/t (nested) loops over distriImted data structures is as follows:

I. Compute the inter:_ection of the index sets of the loop and of lhe locally owned parl of

the dislribuled variable(s) on lhe left hand side of the assignment(s) in the loop body.

Tiffs is the executi m mask.

2. Execule the slalenlents covered by the mask on each processor independently.

This would be the equi':alent of a High Performance Fortran FORALL slalemenl [2]. II is

imporlanl to recognize lhat loops cannot be parallel|zeal l his way in general. Not, only does

it. violate the principle ot a simulated single program counter, it.. also constitutes a reordering

or splitting of the original loop, which cannot be done with impunity in case of recurrences or

other dependencies within the loop body or across ilerations. Nole also lhat locally owned

index sets in Charon can be arbitrarily complex, due to the flexiI)ility of the partitioning



mechanism,andcangenerallynot bedescribedexplicitly in the same loop s! ructure as that

of tile serial program.

We use tile following approach instead. Each assignment in the serial program is trans-

lated into a call to all assign routine, which takes as arguments a left hand side (an address)

and a right hand side (a value). If the address is NULL (not reachable), no assignment takes

place, and tile statement is effectively not executed by the calling processor; il is masked.

NULL addresses result from (unintentional) memory errors, an(] from assignments to nonlocal

memory locations. Tile masking is obtained by using the fimction address, which returns an

actual location for a local element of a distributed variable, and NULL for a nonlocal element.

Masking alone is not sufficient, however, because the righl hand side to be evalnaled can also

be arbitrarily complex, with possible contributions from local and remote memories. For this

purpose the fimction value is introduced. It operates on dislribnted variables an(] always

returns the proper value, or perhaps a 'conventional' segmentation fault in case of a pro-

gramming error. No distinction is made between values returned by the fimction value and

values of nondistributed variables and constants. All are rvalues" in C terminology. Similarly,

no distinction is made between addresses returned by the function address, and addresses

of nondistributed variables. Both are Ivalues in C lerminology. In a correcl program using

only the high-level Charon lools, all rvalues always exisl on each node, whereas Ivalues are

only defined if they are local. Alternatively, we may say l hal_ the highest level of abstraction

of Charon only implements (implicitly invoked) remote gets, not puts. Implemenlation of

remote gels does not, require one-sided communication, since all processors call all assign

roul ines and hence can cooperate in the assembly of each value to be assigned. Because

rvalues must always be defined, value causes the processor that owns lhe particular data

ilem lo broadcast it to all other processors in tile same communicator.

Tile names of each of l}le flmctions assign, value, and address, and many olhers, can

be changed by the user by editing a dictionary before installing Charon. This allows for

terser code, at the possible expense of reduced readability.

Syntax of (Forl ran 77) global access functions (var conslitutes a handle to a distributed

variable):

subroutine assign(my_address,my_value)

<type> my_address, my_value

<type> function value(var,indexl,indexi, ...)

integer var, indexl, indexi, ...

<type> function address(var,indexl,indexi, ...)

integer var, indexl, indexi, ...

Observations:

• Fortran 77 does not make explicit distinction between rvalues and h;alues in declara-

tions, so tile definition of assign appears symmetric in its arguments. In Forlran 90,

my_address wouht be declared with intent(out), and my_value with intent(in).

Also in Fortran 90, my_address can be declared as a symbolic name, or as a pointer

variable. In C, or (_.',++, my_address is a pointer and my_value is an aclua] value.

8



Tile assign operai,_risoverloaded;il cantakevaluesandaddressesof any elemeniary

type, as long as iley are consisient (thai is. value and address musi refer to i he

same iype). The u:_er is responsible for ihe mal ch. Errors cannoi be detected by ihe

compiler or runlim,_ syslem.

Tile generic funcl io 1 value specializes Io real_value, integer_value, logical_value:

double_precision_value and character_value, depending on ihe iype of the dis-

l ributed variable _},ose handle (var) il receives. Similar specializations hold for the

generic function address. In addition, value and address allow variable-lenglh pa-

rameter lisls in or_ler lo accommodale dislribuled variables of differing dimensions.

Integers index1, index2, . . . are global indices wilh respeci to lhe whole grid. Note

that lhe resull of lhe flmclion address is used flmclionally as an lvalue by Charon,

which is not possible in Fortran.

For the reasons lisled atx,ve, assign, value and address are all implemenied in C. However,

they are callable from E_riran. Correclness (i.e. serial consislency) of a program uiilizing

only l:hese routines is ea_,ily shown, even though Charon makes no assumplions aboul lock-

step execution or other fynchronizalion fealures of lhe runlime system, and does not pose

any reslriclions on dale dependencies in lhe program. Each invocation of assign requires

lhe cooperalion of the processor lhal owns a referenced remote data elemenl. Because all

processors execule l he same code, any updale of such referenced remote data occurring

logically before l he valu,'_ is requesled must already have l aken place before lhe reques! is

regislered and salisfied; synchronizaiion is performed auiomalically. This is equivalent Io

realigning lhe replicated ?)rogram counl.er. A side effect of the cooperative nature of implicilly

invoked communicalions is lhat they must be issued as broadca_sl operations. A processor

execuling l he value fire, lion musl take active parl in sending data, bul cannol know which

processor is the recipiel_t unlil address has been evaluaied. Both lhe address and lhe

expression involving valae are arguments of the assign routine, and Forlran semaniics say

thai they may be execuied in arbiirary order. Hence, l he rvalne may need io be evaluaied

before ihe deslinalion a.tdress is known, which implies thai lhe rvalue be available lo all

processors in the comml nicalor. A broadcasi is required. If the lvalue is not a dislributed

variable--in oiher wor&. if ii is a global variable --i he address routine will noi be used.

Global variables are aul,_matically self-consisient, because each processor assigns lhe same

(broadcasi) value Io its local copy 1.

The simplesi opiimizalion ihal can be performed is io by-pass execution of assign

sl.atemenls involving rerc ole daia elemenl s, so lhal no broadcasl s need lo 1eke place. Charon

is notified of this by ihe brackeiing sl atemenls begin_local and end_local.

As an example Charon application we iransform a serial code fragmenl thal compules a

dislribuled variable pr ¢.n a lwo-dimensional grid and counls i he number of limes il drops

below zero.

count = 0

do j = 1, nj

Temporary variables insi te loops are also global variables, and mssignments to them will invoke broadcast
operations if the right hand dde expression contains distributed variables.



do i = I, ni

pr(i,j) = a(i,j)**2 - l.O/b(i,j)

if (pr(i,j) .it. 0.0) count = count+l

end do

end do

Here is tile first parallelized version. Handles t,o distributed variables are indicated by an

underscore (_) suffix.

$

count = 0

do j = I, nj

do i = i, ni

call assign(address(pr_,i,j),

value(a_,i,j)**2 - l.O/value(b_,i,j))

if (value(pr_,i,j) .it. 0.0) count = count+l

end do

end do

We use tile generic names for tile Charon access fimctions for brevity. Notice that tile

structure of the parallel loop nest is identical to that of the original version, and that we

have not made any assumptions about how l.he grid has been partitioned. Tile above loop

nest, is completely serialized, with only one processor making assignments to tile distributed

variable pr at any one time. Notice also that all processors execute lhe conditional statement

for every iteration, causing a potentially large number of remote-memory accesses

In order to improve the performance of this loop while retaining the original structure, we

make use of function po±nt_owner to test whether a point in the decomposition (signified by

the handle decomp) is assigned to the calling processor (identified by the variable my_rank.

We only execute the loop body if the outcome is true. This means that only one processor

will be incrementing the counter, but the final tally needs to be known to all processors. Since

we now allow violation of the principle of a single program counter by prescribing different

actions depending on tile processor number, Charon can no longer automatically guarantee

correctness of the program and some user intervention becomes necessary in the form of a

reduction operation. The following version eliminates all extraneous synchronizations and

redundant communications:

counttmp = 0

call begin_local(decomp)

do j = i, nj

do i = i, ni

if (point_owner(decomp,i,j) .eq. my_rank) then

call assign(address_(pr_,i,j),

value(a_,i,j)**2 - l.O/value(b_,i,j))

if (value(pr_,i,j) .It. 0.0) counttmp = counttmp+l

end if

end do

end do

I0



$

call end_local (decomp)

call MPl_allreduce(counttmp, count, 1 ,MPI_INTEGER,MPI_SUM,

MPI_COMM_WORLD, ierr)

It, should be noted i,Lal this version of lhe loop nest is slill much more expensive lhan

a hand-coded message-p;Lssing version. This is due to l,he facl l hal flmclion calls are made

during every ilerat ion. X.'oreover, all processors do need l.o perform lhe ownership lesl for all

elements of ihe ileration index space. The next opiimization slep is obtained by reslricting

the ileralion index space _ priori. If we assume lhat each processor owns exaclly one partilion

ol" lhe grid, the following code resulls:

counttmp = 0

call begin_local(decomp)

do j = own_low_[decomp,2,1), own_high(decomp,2,1)

do i = own_h,w(decomp,1,1), own_high(decomp,1,1)

call assign(address(pr_,i,j),

$ wllue(a_,i,j)**2 - 1.0/value(b_,i,j))

if (value(pr_,i,j) .it. 0.0) counttmp = counttmp+l

end do

end do

call end_local(decomp)

call MPl_allreduce(counttmp,count,l,MPI_INTEGER,MPI_SUM,

$ MPI_COMM_WORLD,ierr)

This code oplimizalion exposes the domain decomposilion. If lhe decomposilion had con-

sisl.ed ol" an ar|)ilrary nut lt)er of grid parlitions per processor, lhen lhe above loop nes! would

have changed as follows:

counttmp = 0

call begin_local(decomp)

do p = I, own_no_partitions(decomp)

do j = own_low(decomp,2,p), own_high(decomp,2,p)

do i = own..low(decomp,1,p), own_high(decomp,1,p)

call assign_address(pr_,i,j),

$ value(a_,i,j)**2 - 1.0/value(b_,i,j))

if (value(p:c_,i,j) .it. 0.0) counttmp = counttmp+l

end do

end do

end do

call end_local(de.:omp)

call MPI_allreduce(counttmp,count,l,MPI_INTEGER,MPI_SUM,

$ MPI_COMM_WORLD,ierr)

Notice thai point indexing is still global, i.e. with respecl Io file global grid. The price

['or l]lis convenience is llle calls to assign, address and value in file loop body. We now

eliminale l hese and wril.e lhe complete final loop as:

11



counttmp = 0

do p = i, own_no_partitions(decomp)

do j = I, own_partition_size(decomp,2,p)

do i = i, own_partition_size(decomp,l,p)

pr(i,j,p) = a(i,j,p)**2 - l.O/b(i,j,p))

if (pr(i,j,p) .it. 0.0) counttmp = counttmp+l

end do

end do

end do

call MPI_allreduce (counttmp, count, 1,MPI_INTEGER ,MPI_SUM,

$ MPI_COMM_WORLD, ierr)

Now lhere is no need anymore to place calls to the begin/end_local pair, beca.se there

are no more calls io tile value routine. We have finally obtained a code fragment, that is

as efficient as a hand-coded message-passing version. It is also almosl as complicated as

a message-passing code, so it would appear that nothing has been gained. However, lhe

importan! difference with other systems is that this optimized code may be freely combined

with high-level unoptimized code fragments--even within the same s.broutine that do not

conlain any references lo the domain decomposition. It is the programmer's responsibiliiy

lo provide the proper declarations and dimension statements for the distribnled variables.

In the above example arrays pr, a, and b were declared using lhree indices. But it would

have been equally legal to wriie the loop over the partitions owned by tim calling processor

as follows (assuming compact storage of the distrib.ted arrays):

counttmp = 0

do p = 1, own_no partitions(decomp)

si_pr = offset(pr_,p)

si_a = offset(a_ ,p)

si_b = offset(b_ ,p)

ni_p = own_partition_size(decomp,l,p)

nj_p = own_partition_size(decomp,2,p)

call sub_loop (pr (si_pr), a (si_a) ,b (si_b) ,ni_p ,nj_p, counttmp)

end do

call MPI_allreduce(counttmp, count, i,MPI_INTEGEB ,MPI_SUM,

$ MPI_COMM_WORLD, ierr)

subroutine sub_loop(pr,a,b,ni,nj,counttmp)

integer ni, nj, i, j, counttmp

real pr(O:ni+l,O:nj+l), a(ni,nj), b(ni,nj)

do j = I, nj

do i = I, ni

pr(i,j) = a(i,j)**2 - l.O/b(i,j))

if (pr(i,j) .It. 0.0) counttmp = counttmp+l

end do

end do

12



return

end

Here we have assumed l,}i_l arrays a and b are defined without any ghosl poinls, while pr has

a border of size l. The Charon flmclions local_partition_size and start_index are used

1o inlerrogaie lhe layoul_ of l|le decomposilion and tile dislri}mted arrays; respectively. For

complete portabi|ity we tnay use the interrogalion filnction no_ghost_points(var_handle)

1o avoid implicit assump!ions about ghosl points.

The above code fragt>enl loops over the locally owned parlitions in the canonical fashion,

i.e. in l]ie order in which Charon numbers l]le parlilions inlernally. If a particular order o[

visits by sub_loop were r,_quired, for example because synchronizal ions need lo })e performed

after each layer of pariilions in lhe j-direction has been compleled, we can use additional

inlerrogation filnclions. \¥e also make use of lhe funclion own_partition_index, which

relurns ['or a parlicular tcarl.ilion il.s seq,ence number on lhe calling processor if il is owned

]_)y l|lal processor: or -1 olherwise.

counttmp = 0

do jp = 1, no_partitions(decomp,2)

do ip = i, no_partitions(decomp,1)

p = own_parti_:ionindex(decomp,ip,jp)

if (p .ge. O) then

si_pr = offset (pr_ ,p)

si_a = offset(a ,p)

si b = offset(b ,p)

ni_p = own partition_size(decomp,i,p)

nj_p = own partition_size(decomp,2,p)

call sub loop(pr(si_pr),a(si a),b(si_b),ni_p,n3_p,counttmp)

end if

end do

call MPI_barrie::(MPI_COMM_WORLD,ierr)

end do

call MPI_allreduce(counttmp,count,l,MPI_INTEGER,MPI_SUM,

MPI_COMM_WORLD,ierr)

_/e now move io lhe more complex example of operations on arrays of mal rix variables

involving recurrences. _[he serial code represents l he forwar(t-eliminalion phase of a sel. of

independent, block-lridiagonal linear eqnations. Each of lhe diagonals low, main, and up

consisls of (4 x4)-blocks. The righl hand side vector r. which will be overwritten by lhe

solulion, consists of (4 × I)-blocks. The rec, rrence is in the i-direclion

do j = I, nj

do i = i, ni.-I

call invert_overwrite(up(l,l,i,j),main(l,l,i,j))

call vinvert_overwrite(r(l,i,j),main(l,l,i,j))

call multiply add(main(l,l,i+l,j),low(l,l,i+l,j),up(l,l,i,j))

13



call vmultiply_add(r(l,i+l,j),low(l,l,i+l,j),r(l,i,j))
end do

end do

subroutine invert_overwrite(matl,mat2)
real marl(4,4), mat2(4,4), temp(4,4), pivot
' code that overwrites matl by mat2^{-l}*matl
pivot = l.O/matl(l,l)

return
end

subroutine vinvert_overwrite(vec,mat)
real vec(4), mat(4,4), temp(4,4), pivot
' code that overwrites vec by mat2^{-l}*vec
pivot = l.O/mat(i,l)

return
end

subroutine multiply_add(matl,mat2,mat3)
real matl(4,4), mat2(4,4), mat3(4,4)
integer n, m, k
i code that overwrites matl by matl-mat2*mat3
do n = I, 4

do m = I, 4
do k = I, 4

mat1(n,m) = matl(n,m)-mat2(n,k)*mat3(k,m)
end do

end do
end do
return
end

subroutine vmultiply_add(vecl,mat,vec2)
real vecl(4), vet2(4), mat(4,4)
integer n, k
i code that overwrites vecl by vecl-mat*vec2
do n = i, 4

do k = I, 4
vecl (n) = vecl (n) -mat(n, k) *vec2(k)

end do
end do
return

14



end

The difficulty with this ,:ode fragment is lhat the statements that do the actual work are

in subroutines l hal, haw. no knowledge of the overall partitioned grid. They operate on

addresses and neighborin_ memory locations that are passed through parameier lists. Hence:

the strategy of t ranslalillg every assignment into a call 1o the C,haron assign subroutine

does not work. The solution isto demand lhat (v)invert_overwrite and (v)multiply_add

execute atomically, which means that there must be a single: known address that acts as tile

start of a region of lvahlef on lhe same processor. No other values may be modified within the

same subroutine. There nay be several contiguous regions of rvalues, whose sizes must also

be known at rtm time. \4:e now translate the above calling program; (v)invert_overwrite

and (v)multiply_add remain unchanged.

do j = i, nj

do i = I, ni-I

call invoke(invert_overwrite,address(up_,l,l,i,j),l,

$ revalue (16, main_, i, I, i,j))

call invoke (vxnvert_overwrite, address (r_, i, i,j ) ,I,

$ mvalue(16,main_, i, l,i,j))

call invoke(multiply_add,address(main_,l,l,i+l,j),2,

$ my alue (16, iow_, I, I, i+ I,j),mvalue (16, up_, i, i,i, j))

call invoke(waultiply_add,address(r_,l,i+l,j),2,

$ mvalue(16,1ow_, I, l,i+l,j) ,mvalue(4,r_, l,i, j))

end do

end do

Syntax of Fortran 77 bulk access funclions:

subroutine invoke:subf,my_address,no_inbufs,my_valuesl,my_values2,...)

external subf

integer no_inbufs

<type> my_address_*), my_valuesl(*), my_values2(*) ....

<type> function mvalue(n,var,indexl,index2,index3,....)

integer n, var, indexl, index2, index3, ...

The general-purpose rontiTle invoke examines the argument my_address and determines

which processor is resp(,nsible [or lhe execution o1" subrouiine subf: based on the owner-

compuies rule. All other processors will skip lhe invocation of subf, bui they will cooperate

in providing rvalues, as needed, lhrough communications. Again, atomicity is assumed, i.e.

the processor lhat owns l,he first element of the distributed variable in lhe mvalue argument

list is also responsible h,r supplying subsequeni elements. If the first element is local, tim

aclion of mvalue is similar to that of value. ][ remoie, a broadcast operalion requesting

n data elements is iniliated. Upon complelion, the [unclion mvalue poinis lo l|le slarl o[

a buffer region coniaini _g the requesied values. The aciual number of bytes irans[erred

depends on the specific ,tara lype <type> o[ the distributed variable. The subroutine subf

is defined by the user. I1 is invoked by Charon as follows:

1,5



call subf(my_address,my_valuesl,my_values2 .... )

Fortran does not provide information abou! the number of actual parameters with which a

subroutine is called, so t,he user must indicate to subroutine invoke the number of separate

regions of input values through the parameter no_inbufs. If the user-defined subrouline

also takes constants or non-distributed variables as arguments, a slight complication arises.

because Fortran does not distinguish between scalar and array arguments of subroutines.

It does not. allow the type of overloading through argument checking that C++ does. In

Fortran all arguments get translated into addresses, that are then passed to lhe subroutine.

If the argument is an expression, ill gets evaluated and the address of the result is passed |o

the subroutine (cf. value). But invoke expects for each argument not scalars, but poinlers

to arrays. To coerce invoke's argumenls into |his behavior without using mvalue, which

is reserved for dislributed arrays, use the fimction gvalue, gvalue applies to bo|h global

scalars and global arrays.

Nolice again lhat in the translated code fragment no influence of lhe domain decomposi-

tion is visible. The situation changes when we start to optimize the code. First assume thai

|,he grid is partitioned in a stripwise fashion, such that all points on a grid line of constant j

are within the same par|it|on. The block-tridiagonal systems can be solved independen| ly by

all processors, without any communication. Hence, the first optimization is again obtained

by using lhe begin/end_local pair. Skipping a few steps, we easily arrive al lhe follmving

efficient code:

do j = 1, own_partition_size(decomp,2,1)

do i = I, ni-I

call invert_overwrite(up(l,l,i,j),main(l,l,i,j))

call vinvert_overwrite(r(l,i,j),main(l,l,i,j))

call multiply_add(main(l,l,i+l,j),low(l,l,i+l,3),up(l,l,i,j))

call vmultiply_add(r(l,i+i,j),low(l,l,i+l,j),r(l,i,j))

end do

end do

The problem becomes more inleresting when |he grid is partitioned differently, for example

because there are other conflicting recurrences in the program. Assume again |hat each

processor owns one parlilion, bul l.his time Ilia partition does no| stretch lhe whole width

of the grid. We first force the so]ulion algorithm to proceed along stripwise seclions of lhe

grid, but retain the convenience of the implicitly invoked remote gets.

do ip = i, no_partitions(decomp,l)

do jp = I, no_partitions(decomp,2)

p = partition_index(decomp,ip,jp)

do j = low(decomp,2,p), high(decomp,2,p)

do i = low(decomp,l,p), min(ni-l,high(decomp,l,p))

call invoke(invert_overwrite,address(up_,l,l,i,j),l,

$ mvalue(16,main_,l,l,i,j))

call invoke(vinvert_overwrite,address(r_,l,i,j),l,

$ mvalue(16,main_,l,l,i,j))

16



$

$
end do

end do

end do

end do

call invo]:e(multiply_add,address(main_,l,l,i+l,j),2,

mvalue(16,1ow_,l,l,i+l,j),mvalue(16,up_,l,l,i,j))

call invo]:e(vmultiply_add,address(r_,l,i+l,j),2,

mvalue(16,1ow_,l,l,i+l,j),mvalue(4,r_,l,i,j))

Observe thai, lhe origin_d loop has been reordered, but that the recurrence relation is re-

spected. Nexl, !he need for frequent communications must be eliminaled. Since lhe recur-

rence relation has a dep h of only one, a border of ghost poinls of size one suffices for the

disl.ributed arrays. Copying ghost point values from neighboring partitions is accomplished

by using hmcl.ion copyAaces.

Before the loop is eni ered, all ghost point values are initialized. During lhe execulion of

the loop nesi a complicalion arises, because the set of four bulk assignmen! stal.emenls in

the loop body slraddles the boundaries of partitions. Whenever the assignments 'spill over'

ini.o the nexl partil.ion, il. would be preferable l.o wrile ghost point values, rather than move

par!ilion ownership 1o anolIler processor to do the spilled-over assignment.. The mechanism

for causing lhis to happen is the bracketing pair begin/end_ghost_access (p), which forces

ghost poinl values of par!ilion p 1o be writl.en, instead of values of points properly conlained

in olher peril!ions (provided the ghosl points exist). In add!lion, ghosl point values are

read, instead of requesle t through a communicalion or a local memory copy, again provided

the ghost poinls exisl. Ii is as if temporarily the par!ilion owned by lhe calling processor

has been enlarged by i[ e ghost, poinis As before, exactly one processor is responsible for

performing the compute.!ion of each distributed array element, regardless of whether 1.he

begin/end_ghost_access calls are placed. Afler all ghost, poinl.s have been writl.en for a

whole strip of peril!ions, lhe values are transferred in bulk to the neighboring processors by

calling lhe function copy_ghost_faces.

Syntax of Fortran 77 face copy functions:

subroutine copy_f_ces(var,periodicity,thickness,dimension,cut,subset)

integer var, peri)dicity, thickness, dimension, cut, subset(2,*)

subroutine c°pY-ga°st-faces(var'peri°dicity'thickness'dimensi°n'

cut,subset)

integer var, perigdicity, thickness, dimension, cut, subset(2,*)

subroutine copy_faces_all(var,periodicity,thickness, stencil_shape)

integer var, perigdicity, thickness, stencil_shape

subroutine copy_ghost_faces_all(var,periodicity,thickness,stencil_shape)

integer var, periodicity, thickness, stencil_shape

Copy_faces copies value'.; from the outermost, qayers" of partitions to l.he corresponding ghost:

points of adjacent, partil ons. thickness refers i o the number of layers to be copied (smaller

17



than or equal to the total thickness of tile borders). If thickness is ALL, all layers are copied.

If dimension equals p, copying lakes place to neighboring partitions in the pth coordinate

direclion, where p can be positive or negative. If copying is required in a single dimension

but in both directions, write p+ALL. Tile parameter cut specifies the sequence number of lhe

cut in the coordinate direction defined by dimension across which the copy operation is to

take place. Selling cut equal to ALL selects all cuts simultaneously. If the copy operation is

PERIODZC, the sequence number of the cut may be zero, or one more lhan the aciua] number

of cuts present (in Fortran, where the default array" starting index is 1). Eilher case will

be interpreted as a periodic copy. If the operation is NONPERIODZC, such cuts are ignored.

Additionally, we may restrict the copying to a subset of a particular face, indicated by the

lwo-dimensional array subset. It lists, for each coordinate direct.ion ot.her than that normal

lo the face Io be copied, the start and end coordinates of the points of lhe subse! with respecl

to the global grid. Alternatively, use ALL for the starting index if all poinls along the cut

are to be copied.

Often it will be usefill to copy face values at all cuts in all dimensions and direclions,

especially in lhe case of explicit me|hods, where all off-processor information can be fetched

beforehand. For this purpose the variation copy_faces_all is provided. It takes as an

argument the stencil shape, which can have the values BOX or STAR (see [1]). The STAR shape

ignores diagonal values and only copies between strongly connected partitions. BOX. which

also copies values to weakly connected partitions, will result in a staged copying of data

to reduce latency. Figure 1 shows several different applications of l he copy_faces [_all]
routines.

Copy_ghost_faces accomplishes the same as copy_faces, bul copies values from ghost

points lo points properly owned by neighboring partitions.

Notice thal both types of copy fimctions are data-parallel. All processors participate, in

principle, bul only operate on the data that they own (if a processor is responsible for neither

sending nor receiving, il can safely skip the copy call). In fact, the result of copy operations

is independent of the number of processors involved, but depends only on l he number and

]ay-oul of the part|lions. This is true for all Charon operat]ons defined so far; distributed

programs can be simulated, lested and debugged, to a large extent, while using only a single

processor. One may even use Charon exclusively to obtain })locked uniprocessor code lhat

optimizes data locality. Hence, the fol]mving program will run correctly on any number of

processors.

call copy_faces(r_,NONPERIODIC,I,-I,ALL,ALL)

call copy_faces(Iow_,NONPERIODIC,I,-I,ALL,ALL)

call copy_faces(main_,NONPERIODIC,l,-l,ALL,ALL)

do ip = i, no_partitions(decomp,l)

do jp = I, no_partitions(decomp,2)

p = partition_index(decomp,ip,jp)

call begin_ghost_access(decomp,p)

do j = low(decomp,2,p), high(decomp,2,p)

do i = low(decomp,l,p), min(ni-l,high(decomp,i,p))

call invoke(invert_overwrite,address(up_,l,l,i,]),l,

mvalue(16,main_,l,l,i,j))

18



a. partitioned _rid

4 II
123456789

c. Copy_faces._all, nonperiodic,
box-shaped

b

a a ab

a c
a b b b ]c

a_c
d_f e I" I r

a bb b c b c c c

d e e elf

d e e elf

d e e elf

e. Copy_faces periodic+2, all cuts,
dimension =-1

ddd e e e f f f

b. distributed array, shaded ghost
points (exploded view)

d. Copy_faces_all, periodic+l,
star-shaped

_ b_a

c b a c

c b a c b a

c b a c b a

c b a c b a

e e e

a a a bb b c c c

f e

f e d f e d

f e d f e d

f e d f e d

f. Copy_faces, nonperiodic, cut=2,
dimension=l+all, subset=(3,5)

a a a bb b c c c

Figure 1: Applications of copy__faces and copy_faces_all to a distributed array.

$

$

$

call invol:e(vinvert_overwrite,address(r_,l,i,j),l,

mvalue(16,main_,l,l,i,j))

call invohe(multiply_add,address(main_,l,l,i+l,j),2,

mvalue(16,1ow_,l,l,i+l,j),mvalue(16,up_,l,l,i,j))

call invohe(vmultiply_add,address(r_,l,i+l,j),2,

mvalue(16,1ow_,l,l,i+l,j),mvalue(4,r_,l,i,j))

end do

end do

call end_ghos-;_access(decomp,p)

end do

call copy_ghost.faces(main_,NONPERIODIC,l,l,ip,ALL)

call copy_ghost faces(r_,NONPERIODIC,I,I,ip,ALL)

19



end do

Tile above loop structure no longer requires the implicitly invoked communications. Con-

sequently, we can relax the principle of the simulated single program counter and let each

processor execute only its own part of the loop. Bul a poor load balance obtains, because

only those processors who own partitions in tile same strip of tile grid can be aclive at lhe
same time:

call copy_faces(r_,NONPERIODIC,I,-I,ALL,ALL)

call copy_faces(Iow_,NONPERIODIC,I,-I,ALL,ALL)

call copy_faces(main_,NONPERIODIC,l,-l,ALL,ALL)

call begin_local(decomp)

do ip = i, no_partitions(decomp,l)

do 3p = I, no_partitions(decomp,2)

p = partition_index(decomp,ip,]p)

if (partition_owner(decomp,p) .eq. my_rank) then

call begin_ghost_access(decomp,p)

do j = low(decomp,2,p), high(decomp,2,p)

do i = low(decomp,I,p), min(ni-l,high(decomp,I,p))

call invoke(invert_overwrite,address(up_,l,l,i,j),l,

mvalue(16,main_,l,l,i,j))

call invoke(vinvert_overwrite,address(r_,l,i,3),l,

mvalue(16,main_,l,l,i,3))

call invoke(multiply_add,address(main_,l,l,i+l,]),2,

mvalue(16,1ow_,l,l,i+l,j),mvalue(16,up_,l,l,i,]))

call ±nvoke(vmultiply_add,address(r_,l,i+l,3),2,

mvalue(16,1ow_,l,l,i+l,j),mvalue(4,r_,l,i,j))

end do

end do

call end_ghost_access(decomp,p)

end if

end do

call copy_ghost_faces(main_,NONPERIODIC,l,l,ip,ALL)

call copy_ghost_faces(r_,NONPERIODIC,l,l,ip,ALL)

end do

call end_local(decomp)

4.1 Multi-partition version of tri-diagonal solver

The load balance of the above loop nest. can be improved by selecting another domain

decomposition. If each processor receives not one but several partitions of tile grid, arranged

according 1o the diagonal mull i-partition scheme [5, 6], the loop automatically becomes load

balanced. Eliminating lhe invoke references, we obtain 1]m final version of the code:

call copy_faces(r_,NONPERIODIC,I,-I,ALL,ALL)

call copy_faces(Iow_,NONPERIODIC,I,-I,ALL,ALL)

20



call copy_faces(mein_,NONPERIODIC,I,-I,ALL,ALL)

do ip = I, no_Tartitions(decomp,l)

do ]p = i, nc_partitions(decomp,2)

p = own_partition_index(decomp,ip,jp)

if (p .gt. O) then

do j = I, own_partition_size(decomp,2,p)

ihigh = o_n_partition_size(decomp,I,p)

if (ip .ec. no_partitions(decomp,l)) ihigh = ihigh-I

do i = I, ihigh

call in_ert_overwrite(up(l,l,i,j,p),main(l,l,i,j,p))

call virvert_overwrite(r(l,i,j,p),main(l,l,i,3,p))

call mu]tiply_add(main(l,l,i+l,3,p),low(l,l,i+l,j,p),

up(l,l,i,],p))

call vm_Itiply_add(r(l,i+l,j,p),low(l,l,i+l,j,p),r(l,i,j,p))

end do

end do

end if

end do

call copy_ghost, faces(main_,NONPERIODIC,l,l,ip,ALL)

call copy_ghost, faces(r_,NONPERIODIC,l,l,ip,ALL)

end do

4.2 Pipelined uni-partition version of tri-diagonal solver

If multi-parlitioning is nol _asible, per_rmance of tile loop nest can still be improved by

pipelining l|le uni-parlil, on solver. We will assume _r simplicity Ilia! the number of grid

poinls in tide j-direct, ion is divided evenly among tile processors, and thai. l he size of each

parlilion in tile j-direction is divisible by the pipeline grouping _ctor npipe. Olherwise,

some preconditioning woMd be necessary.

call copy_faces(r..,NONPERIODIC,I,-1,ALL,ALL)

call copy_faces(Iow_,NONPERIODIC,I,-I,ALL,ALL)

call copy_faces(main_,NONPERIODIC,l,-l,ALL,ALL)

call begin_local(decomp)

do ip = I, no_partitions(decomp,l)

do jp = I, no_partitions(decomp,2)

p = partition.index(decomp,ip,jp)

no_stages = (high(decomp,2,p)-low(decomp,2,p)+l)/npipe

do stage = I, no_stages

subset(l,l) = low(decomp,2,p)+(stage-l)*npipe

subset(2,1) = subset(l,l)-l+npipe

if (partition_owner(decomp,p) .eq. my_rank) then

call begin_ghost_access(decomp,p)

do j = subset(l,l), subset(2,1)

do i = low(decomp,I,p), min(ni-l,high(decomp,l,p))

call :_nvoke(invert_overwrite,address(up_,l,l,i,j),l,

21



$

$

$

$

mvalue(16,main_,l,l,i,j))

call invoke(vinvert_overwrite,address(r_,l,i,j),l,

mvalue(16,main_,l,l,i,j))

call invoke(multiply_add,address(main_,l,l,i+l,j),2,

mvalue(16,1ow_,l,l,i+l,j),mvalue(16,up_,l,l,i,j))

call invoke(vmultiply_add,address(r_,l,i+l,j),2,

mvalue(16,1ow_,l,l,i+l,3),mvalue(4,r_,l,i,j))

end do

end do

call end_ghost_access(decomp,p)

end if

call copy_ghost_faces(main_,NONPERIODIC,l,l,ip,subset)

call copy_ghost_faces(r_,NONPERIODIC,l,l,ip,subset)

end do

end do

end do

call end_local(decomp)

The above loop deviates from what would usually be obtained by programming a pipelined

equation solver from scratch. Most significantly, there is only one copy of the main loop body;

no special cases have to be distinguished for processors at the begin or end of the pipeline.

Moreover, synchronization appears in a natural place, namely after tile program text that

finishes a stage of the pipeline. This is a fringe benefit of the coding style encouraged by

Charon. Tile nser is led to approach the numerical problem at hand from 1he perspective of

the overall dat.a space and instruction stream, not just from tile subset owned by each indi-

vidual processor. Equally important is tile Charon concept of data-parallel communications.

All processors call each communication routine, in principle, but action and/or synchroniza-

tion is required only by those processors that own or need the data that is communicated.

Finally, we revert 1o accessing the distributed-array elements directly. This eliminates

the overhead of the many flmction calls to invoke, address, and mvalue. In addition, we

rearrange tile order in which the partitions are visited. Pipelining inhibits copying interface

dala along entire cuts, and copying only a few numbers at a time can lead to a significanl

overhead if all processors must execute each instance of copy_ghost_faces. So instead, we

write tile loop nest as a set of independent pipelines, one for each strip of parl.ilions in the

i-direction. To accomplish this we make use of the function own_partition_coordinate,

which returns for the pth partition owned by the calling processor the partition index in

a specified coordinate direction (i.e. tile sequence number of tile strip of partitions). Tile

copy operation after completion of each pipeline segment will finish correctly and without

deadlock, because all processors that are involved in the communication are in the same

strip, and hence call the copy routine.

call copy_faces(r_,NONPERIODIC,I,-I,ALL,ALL)

call copy_faces(Iow_,NONPERIODIC,I,-I,ALL,ALL)

call copy_faces(main_,NONPERIODIC,l,-l,ALL,ALL)

do jp = i, no_partitions(decomp,2)

22



if (own_partition_coordinate(decomp,l,2) .eq. jp) then

do ip = i, no_partitions(decomp,l)

p = partiti(>n_index(decomp,ip,jp)

no_stages = (high(decomp,2,p)-low(decomp,2,p)+l)/npipe

do stage = I, no_stages

subset(l,:L) = low(decomp,2,p)+(stage-l)*npipe

subset(2,2) = subset(l,l)-l+npipe

if (partition_owner(decomp,p) .eq. my_rank) then

do j = l+(stage-l)*npipe, stage*npipe

thigh = partition_size(decomp,l,p)

if (iI, .eq. no_partitions(decomp,l)) thigh = ihigh-I

do i = I, thigh

call. invert_overwrite(up(l,l,i,j),main(l,l,i,j))

call. vinvert_overwrite(r(l,i,j),main(l,l,i,j))

call. multiply_add(main(l,l,i+l,j),low(l,l,i+l,j),up(l,l,i,j))

call. vmultiply_add(r(l,i+l,j),low(l,l,i+l,j),r(l,i,j))

end do

end do

end if

call copy..ghost_faces(main_,NONPERIODIC,l,l,ip,subset)

call copy..ghost_faces(r_,NONPERIODIC,l,l,ip,subset)

end do

end do

end if

end do

4.3 Additional solver optimizations

Although tile final mulli-partition and pipelined uni-partition codes are quite efficient, there

are some olher optimizalions that users might consider. First, there is no strict necessity 1o

use ghosl points for this application. They are used to satisfy the remote data requirements

of the solver implicitly t)_" duplicating such data in tile location where they are expected by

the calling processor. But explicit message pa,ssing could also |lave been used (the lowest level

of abstraction in Charon), in which send and receive bufl'ers are managed by tile user. Buffer

data can lhen be inlegrded in the computation directly as it arrives, without first being

stored in the ghost point locations. This is no! necessarily fasler lhan using ghost points, but

it saves space. Second, a _erlain overhead is incurred by letting processors perform a loop over

partitions they do not own, instead of focusing on those they (to own. Since no computational

work is clone on nonlocal partitions, Ibis overhead is small, except in the ease o[ extremely

fine partitioning. Then the multi-partition mei.hod can be filrther improved by computing in

advance which parlition in each strip of parlitions is owned by the calling processor Third.

if explicit message passir.g were used, some message aggregation would be possible by filsing

co-located calls 1.o tile cc,py routines. Because Charon provides t.he mechanism lo construe!

coarse-grained parallel programs with relative ease, latency reduction through such filsings

is generally minimal. Tlese optimizations should only be considered if at)solnl.ely require(t,

23



since they increase tile programming complexity significantly.

A potentially more usefid optimization is obtained by using asynchronous communication

calls icopy__faces, icopy_.faces_all, etc. Such calls return immediately without [)locking

on _he sending or receiving side. A copy_wait call must be issued at the point, in the program

where tile expected data is actually used.

4.4 Data redistribution

Certain applications femure a succession of different, and very" strong data dependencies

during the course of the computation. Such programs may benefit from a dynamic redis-

tribution of part of their data to reduce the frequency of remote-memory accesses. This is

accomplished by tI|e routine redistribute. In most cases redistribution resulls in a global

exchange of data, which is an expensive operation that should be applied with care. If pos-

sible, the asynchronous version ±redistribute shouht be used. The routine assumes that

both the source and the destination distributed variables have been predefined. Obviously,

redistribution can only take place between distributed variables of the same tensor rank and

vector dimensions, defined on the same grid. Increased efficiency is obtained for variables

that are also based on l.he same partition, since this reduces the fragmentation of the packets

of data to be communicated between processors. If space for the two distributions (partially)

coincides, Charon treats lhe redistribution as an in situ operation, which is usually more

expensive t}lan in the case of spatially disjoint copies.

Syntax of Fortran 77 redist.ribulion function:

subroutine redist ribut e(to_var, from_var)

integer to_var, from_var

S Charon utilities

The previous sections described the basic Charon flmctions that can be used to write parallel

programs in a piecemeal fashion. However, for the conversion of legacy codes some more

utilities are needed. Common practice in the writing of scientific computing codes includes

overindexing, and 1.he introduction of lower-dimensional array segments. Overindexing is

especially usefid on vector computers, where it serves to increase the vect.or length of inner

loops. Lower-dimensional array segments are used a_sscratch space, or t.o provide a convenient

local reference to a higher-dimensional array. We will show how to implement these lhree

techniques using Charon.

5.1 Specialized and generalized distributions

Lower-dimensional segments of distributed arrays are called slices. They are defined using

the command create_slice. Since they use the same space as the arrays from which they

are 'carved', no pointers to memory locations are necessary. The syntax of the command is
as Follows:

subroutine create_slice(var_slice,var,no_dims,indices)

integer var_slice, var, no_dims, indices(*)

24



The parameter no_dims ndicates thai dimensions 1 through no_dims of the original dis-

tri}mted array (signified l,y vat) are ret.ained. The array indices contains an ordered lisl

of dropped--and hence omstant--indices of l,|le parent array. If lhe parameter var_slice

refers to an existing, valid slice, thai old slice definition is deleted and overwritten by the new

one. This is consisienl with i he programming praciice of sweeping over higher-dimensional

arrays in a slicewise lash on. Depending on the size and lhe number of operations on |he

slice, calls to create_slice may represenl a signifcant overhead. Higher efficiency can be

achieved by creating and storing the slices only once in a preprocessing step. All operations

on parlitions (other that_ those that change the layout) can also be applied 1o slices. A

slice will generally consisl of a number of segments of partitions contained in lhe parent dis-

tributed array. These segmenls inherit their local sequence number from the corresponding

part|lion.

Arrays of lower dimension lhan lhat of lhe grid lhat are used as scral ch space are defined

using a generalizalion of the create_distribution routine. This results, as in the case of

create_slice, in |he creation of a dislribulion.

subroutine create_generalized_distribution(var,decomposition,data_type,

$ start_address,rank,components,ghost_points,index,

$ leadin@_position)

integer var, decomposition, data_type, rank, components(*), ghost_points,

$ index(*), leading_position

<type> start_addzess(*)

The value of index (i) ir dicales which index of the subarray corresponds lo grid dimension

i. If the value is negative, say -p, then lhal grid dimension is excluded from the generalized

(tislribulion, and its in(t,.'x is fixed at p. create_generalizedAistribution can also })e

used 1o creale plain dist!'ibutions by setting index(i) equal to i for all dimensions of the

grid. Permul at ions of grid indices are obtained by making index a proper permulation of

the grid dimensions. Fit ally, the user can choose the relalive positions of grid and tensor

indices. By setl.ing lhe parameter leading_position to TENSOR--Ihe defaull for the slan-

dard createAistributxon routine-the tensor indices are lhe faslesl varying componenls

of lhe distribuied variable (in Eortran). Choosing GRID makes the grid indices vary fastest.

The technique of overindexing is the most complicated to accommodale, because it relies

heavily on l he implicilly defined storage formal of lVorlran arrays. I1. can also be relatively

expensive when applied carelessly to loops lhal run over multiple partitions: and should

generally be avoided in parallel programs. Bul since it is widely pracliced in traditional

scientific computing, sonle support for it must be provided. The Charon answer is to fuse

a number (no_dims) of array indices of a dislrilmtion, lhus crealing an alias for the original

dislribulion. The resull tgain obeys all lhe rules for distributions.

subroutine create..fused_distribution(var_alias,var,no_dims)

integer var_alias, var, no_dims

As an example, if lwo dimensions (the first two) of a four-dimensional distributed array

are fused, tile variable is ilenceforth indexed using only three indices. Nole It|at contiguous

array elements in the se'ial code may not be contiguous anymore in lhe distribuled array,

25



even when they are within the same partition, due to the existence of ghos! points. The

Charon functions value and address will take proper care of this, and the results will be as

expected, as if lhere were no ghost poinls. Bill, the step from the high-level Charon code lo

the lower-level concurrent code with direct array access may no longer })e as straightforward
as before.

5.2 Irregular remote data requests

So far we have only discussed the facilitation of regular remote array accesses through the

Charon copy_faces routines. But sometimes it. is necessary to make reference to remote dat.a

in an arbitrary pattern. For this purpose Charon provides a device called copy_tile, which

places in the memory of parl.icular processors a copy of a Cartesian subset of a distribuled
variable.

subroutine copy_tile(var,comm,start_address,subset)

integer var, comm, subset(2,*)

<type> start_address(*)

As all Charon communication routines, copy_tile is called by all processors in lhe communi-

cator for which lhe distributed variable is defined. If the calling processor is a member of com-

municator comm, lhen a copy of tile Cartesian subset defined by l-I;____[s_,bset(l, i), .s**bset(2, i)]

is placed in a buffer at start_address. An asynchronous, nonblocking version is also avail-

able under the ,lame of icopy_tile.

There are certain similarities between copy_tile and tile remote data requests in the

Global Arrays package [3], as both mechanisms allow subsets of global data to be galhered.

However, in the case of Global Arrays, such subsets are restricied to two-dimensional subsets

of matrices, whereas in Charon subsets of arbitrary dimension are allowed. Anolher difference

is that in Charon copying is a collective operation, and no explicit, synchronization is required,

except, in the case of asynchronous transfers. By contrast, Global Arrays uses one-sided

communication, which always requires synchronization.

5.3 Parallel I/0

Using the newly defined parallel I/O subset of MPI 2 [7], distributed variables can be written

to a file in a single step, as was demonstrated in the multi-partilion parallel flow solver

RANS-MP [6]. Syntax: To be determined.

6 Conclusions

A practical design for a system to accommodate piecemeal conversion of serial legacy codes

or designs to efficient distributed-memory message-passing programs has been presented.

Although Charon targets complicated structured-grid applications, its principle extends to

other areas as well. What is required is a set of flmctions that gives the user global access to

elements of distributed data structures, in the vein of the Charon structured-grid flmclions

value and address, supplemented with a set of flmctions 1o creale and manipulate such

data slructures. The ial.ler, as well as suitable data-parallel communication functions, are

likely to be specific to the application area.

26



WhereasCharondoesnot itself comprisean automalicparallelizationfacility, it is ame-
nablelo tile useof suchto.)ls. In principle, all the user need do is determine tile distributions

of large arrays. Using lhese as inpuls, it can be inferred automatically where and how to

place calls to assign, invoke, address, value, and mva.lue. Subsequent tuning is then

carried oul by the programmer.

Finally, we summarize the features that distinguish Charon from systems that are based

exclusively on (semi-)aul(,matic program lranslaiion. Charon:

• gives the user comix.lete control over data distribution, including advanced schedules

such as multi-partitioning.

• gives the user coml:lete control over memory usage and data layout within each pro-

cessor, including coincident arrays anti han(t-tmled pad(ling.

• gives the user complete control over granularity of the program through 1he flexible

communicalion specification mechanisms of copy_faces/tile.

• allows re(tistributioll of distributed arrays.

• allows easy incremental program change; no new analysis is needed when modules or

statemenls are athtett, anti previous t unings are never lost.

poses no reslrictiol_s on programming model; allhough lhe Charon fools facililate

SPMD-style programming, use of differeni communicators provides the flexibility 1o

create different conlexts, and message-passing calls can always be used to support true

MIMI) programs.

The disadvanlage of this {texibility is thai hand-coding is involved, and that some knowledge

of the program structure and data dependencies is required.

References

[1] S. Flalay, W.D. Gr¢,pp, L. Curfman Mclnnes, B.F. Smith, Efficient management o.f

parallelism, in, objec,-oriented n_tmerical software libraries, Modern Software Tools in

Scientific Computing, E. Arge, A.M. Bruaset, H.P. Langtangen, Ed.. Birkhauser Press,
1997

[2] C. Koelbel, D. Loveman, R. Schreiber, G. Steele, M. Zosel, The High, Performance

Fortran, Handbook, I\IIT Press, Cambridge, MA, 1994

[3] J. Nieplocha, R.J. ]tarrison, R.J. Littlefield, The global array programming model .for

high. performance stientific computing, SIAM News, Vol. 28, No. 7, August-September
1995

[4] M. Snir, S.W. Otto, S. Huss-Lederman, D.W. Walker, J. Dongarra, MPI: The Complete

Reference, MIT Press, 199,5.

[5] R.F. Van der Wijngaart, Ch.aron toolkit for parallel, implicit stmtct_lred-grid computa-

tions: Literature su:vey and conceptual design, NAS Report xxx, NASA Ames Research

Cenler, Moffett Fiekt, CA, 1997

27



[6] R.F. Van der Wi.jngaarl,M. Yarrow,M.H. Smith. An architect_re-independent paral-

lel implicit Jtow solver with e['ficient l/O, Proc. Eighth SIAM Conference on Parallel

Processing for Scienti[ic Computing, Minneapolis, MN, March 1997

[7] MPI Forum, MPI-2: Extensions to the Message-Passing Interface,

URL: "hi i,P://www.mcs.anl.gov/Projects/mpi/mpi2/mpi2-report/mpi2-repori.htm]"

28


